

ePOWER:

Smart power electronic converter for the provision of integrated services to electric grids and consumers

Co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE-INNOVATE (project code: T2EΔK-01775)

- High number of Distributed Generation systems with Renewable Energy Sources interconnected with the low-voltage electrical grid (e.g. PVs on buildings) :
 - stochastic electric energy generation by RES
 - limited controllability
 - difficult short-term forecasting of their operating status etc.
- Problems:
 - difficult to control the conventional energy-production plants and regulate the electrical grid frequency → rejection of RES-generated energy
- Solution: electric energy storage systems

- Additional advantages of the electric energy storage systems:
 - support of "valley filling" / "peak-shaving" operations
 - improvement of the electric system response during fast fluctuations of the electric energy production and demand
- Contribution of distributed storage: voltage support at the Point of Common Coupling, minimization of the local grid losses etc.
- **Cost of electric energy storage systems:** reduction by >60% till 2030.
- Distributed storage in future power systems: batteries of electric vehicles

- Alternative types of electric energy storage units:
 - batteries: high energy density
 - supercapacitors: high power density
 - hybrid configurations: combination of advantages

Device for the interconnection of RES and energy storage with the electrical grid:

power electronic converters DC/AC (inverters)

Existing industrial and scientific solutions:

- PV inverters for Volt/VAR support at the distribution network: without energy storage capability
- Hybrid energy storage in PV systems: implemented by combining separate
 DC/DC converters for each energy storage unit → high complexity and cost
- Commercially available hybrid PV inverters: **feature only battery storage** and **without functionality of supporting the electrical grid**
- Commercially available inverters for electrical grid support: only with batteries for energy storage

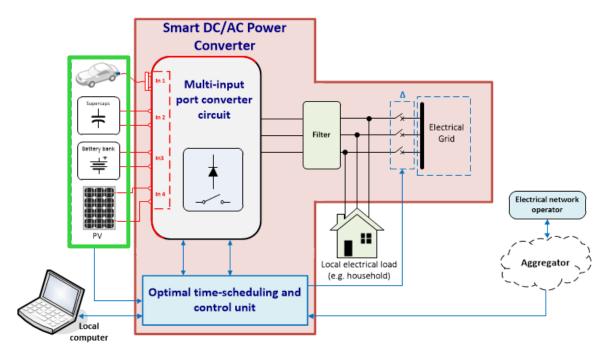
The solution developed in this project (I)

ePOWER:

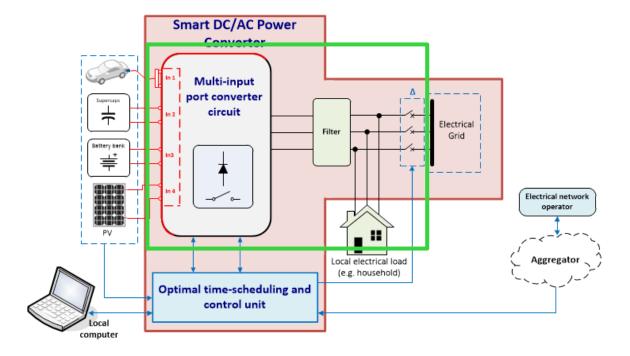
Smart power electronic converter DC/AC:

constitutes the interface of small-scale energy storage units and PV arrays with the low-voltage electrical grid

ePOWER:

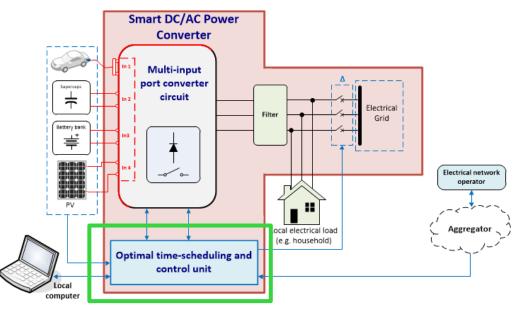

Smart power electronic converter DC/AC that offers:

- **ancillary services to the electrical grid** (frequency regulation, voltage support at the PCC during high voltage drops)
- uninterruptible operation of the local hosting system (e.g. residential electrical system) during prolonged disturbances of the electrical grid (e.g. short-circuits, blackouts etc.)


4 DC inputs for connection of:

- electric vehicle, supercapacitor bank, battery bank (either Li-ion, or lead-acid type) and a PV array

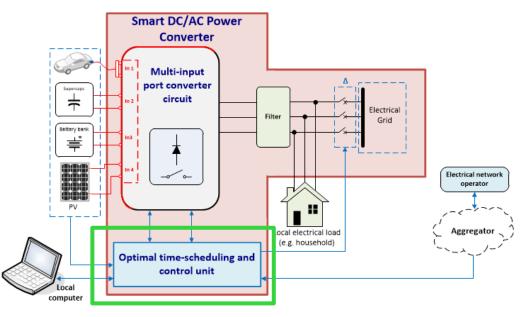
Subsystems:



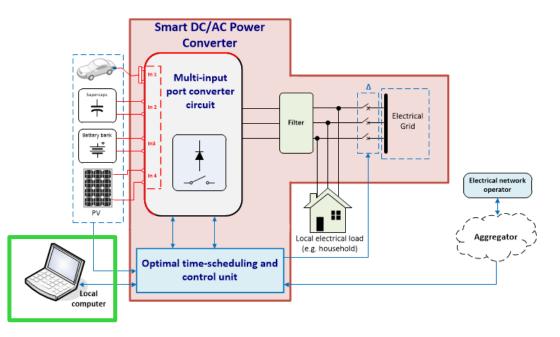
Power circuit & filters:

- Multi-Port Converter (MPC) topology
- 3-phase AC outputs

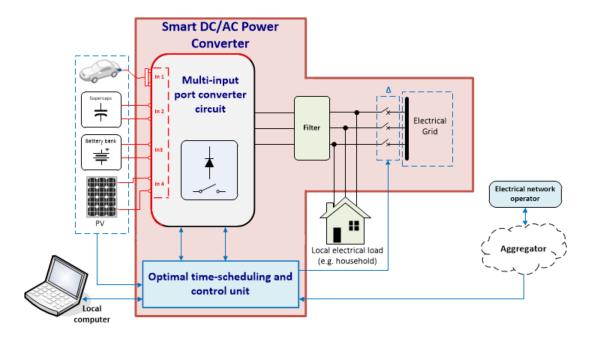
Real-time control unit:


- Calculation of the optimal charge/discharge trajectories of the electric vehicle and the battery bank according to:
 - 1) forecasts (electric energy cost, power system load, PV energy production)
 - 2) preferences of the electric vehicle user (duration of charging, recharging
 - level during disconnection etc.)

Real-time control unit:

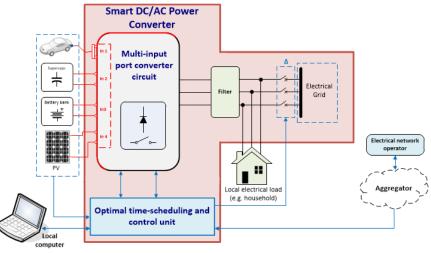

- Support of the electrical grid voltage & frequency
- PV array Maximum Power Point Tracking (MPPT) even under partial shading
- Power supply to the local load during prolonged undervoltage of the electrical grid
- Reactive power support to the electrical grid during short-term undervoltage conditions of the electrical grid

Communication interface with a local computer for definition by the user of:

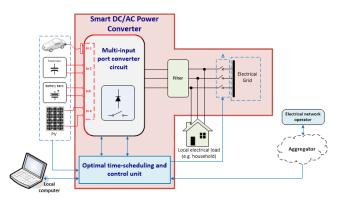

- size of the energy storage units
- maximum power exchange with the electrical grid
- power quality specifications and
- monitoring of the DC/AC inverter operation

Proper design of the overall Smart DC/AC Inverter for:

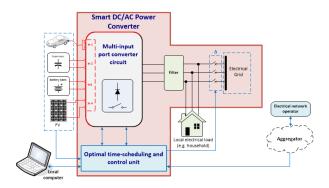
- **parameterization** of the desired operational characteristics by the user, without requiring modification of its hardware
- maximum efficiency and minimum size and cost



Novelty of ePOWER:

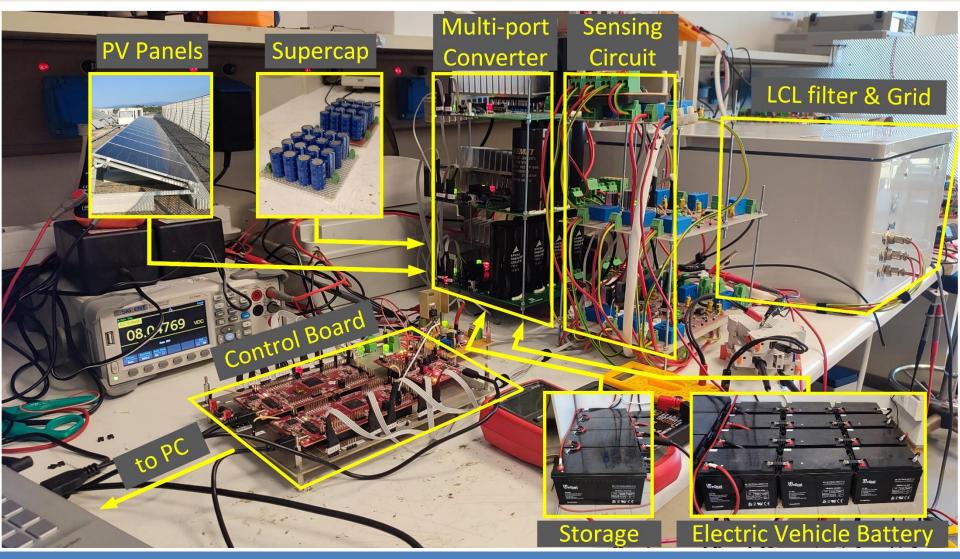

- comprises an integrated system for optimal management of multiple energy production and storage units
- combines the multiple components of an energy conversion and storage system into an optimally-designed and cost-effective device
- it is able to perform both energy management and voltage/frequency support at the low-voltage electric grid level, as well as to improve the quality of the generated power
- it is also applicable in local Microgrids

- 1. Develop a fully-functional experimental prototype system
- 2. Produce novel research results:
 - power electronics, control for interconnection with Smart Grids / Microgrids, energy storage/management systems, embedded systems etc.
- 2. Exploit the industrial potential of the ePOWER Smart DC/AC inverter



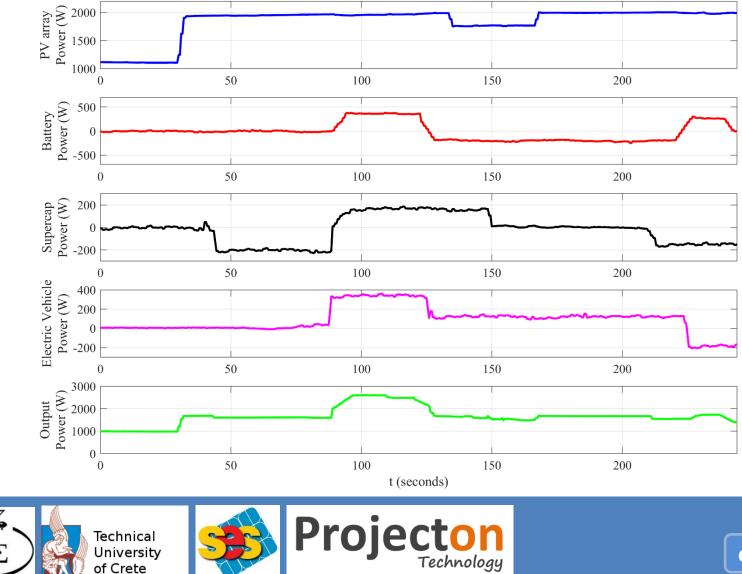
ePOWER project implementation

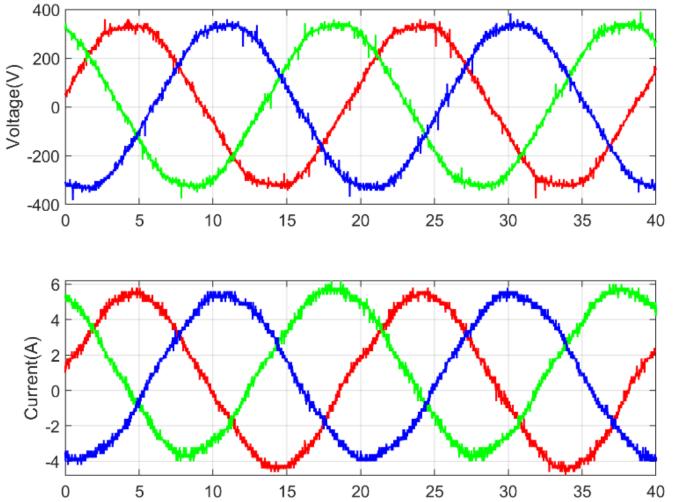
- Starting date: 12/5/2020
- Duration: 38 months


(after extension due to COVID-19 protection measures)

- Total budget: **460789.63** €
- Partners (Greek research institute and companies):
 - Telecommunication Systems Research Institute / Technical University of Crete (coordinator)
 - SUN ENERGY SOLUTION
 - **PROJECTON**

Experimental prototype of the ePOWER multi-port DC/AC inverter





Experimental waveforms depicting the various power flow options of the ePOWER multi-port DC/AC inverter

Example of the output voltages and currents at 3 kW

Time(milliseconds)

Publications

- I. Roditis, M. Dakanalis, E. Koutroulis and F. D. Kanellos, "Three-Phase Multiport DC–AC Inverter for Interfacing Photovoltaic and Energy Storage Systems to the Electric Grid," in *IEEE Journal of Emerging and Selected Topics in Industrial Electronics*, vol. 4, no. 3, pp. 982-994, July 2023.
- M. Dakanalis, I. Kalaitzakis, I. Roditis, E. Koutroulis, F. D. Kanellos, E. Sergaki, "Real-time Energy Management System for a Multiport DC/AC Inverter", 2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST), Athens, Greece, 2023, pp. 1-5.
- ✓ I. Roditis, M. Dakanalis, I. Mandourarakis, E. Koutroulis and F. Kanellos, "A New Multiport DC-AC Power Converter for Distributed Energy Applications," 2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON), Kharagpur, India, 2022, pp. 1-6.
- I. Kalaitzakis, M. Dakanalis and F. D. Kanellos, "Optimal Frequency Support by Residential Multi-Port Power Converters," 2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 2022, pp. 1-4.
- ✓ I. Kalaitzakis, M. Dakanalis and F. D. Kanellos, "Optimal Power Management for Residential PEV Chargers with Frequency Support Capability," 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 2021, pp. 1-4.

Awards

✓ Best Student Paper award on Electronics at the 2023 12th International

Conference on Modern Circuits and Systems Technologies (MOCAST):

